OPT++

An Object-Oriented Toolkit for
Nonlinear Optimization

Juan Meza

High Performance Computing Research
Lawrence Berkeley National Laboratory
http://crd.lbl.gov/~meza

Z{:ﬁ' {;T;:::,: Fourth Workshop on the DOE Advanced Computational Software Collection -f_}| -'i

R Berkeley, CA, August 5-8, 2003




Outline

“ Introduction to Optimization

“» OPT++ Philosophy

*» OPT++ Problem and Solver Classes
¢ Quick Tour of Algorithms

+ Parallel optimization techniques

+ Setting up a Problem and Algorithm
= Example 1: Unconstrained Optimization
= Example 2: Constrained Optimization
= Example 3: Protein Folding

“ Summary

F&;—,‘ " Office of
.S Science Fourth Workshop on the DOE Advanced Computational Software Collection
WL DEALATHINT OF ARG Y Berkeley, CA. August 5-8, 2003



Introduction

“» OPT++ Is an open source toolkit for general
nonlinear optimization problems

* Original development started in 1992 at Sandia
National Labs/CA

“* Major contributors
= Juan Meza, LBNL
= Ricardo Oliva, LBNL
= Patty Hough, SNL/CA
= Pam Williams, SNL/CA
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Global OPTimization

Total = 338

Other (Country not identified) = 120
As of April, 2003
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Simulation-based optimization problems

*» Predict properties of
nanostructures or design
nanostructures with desired
properties

** Protein folding problems:
create secondary structures
and obtain predictions of a-
helices and (3-sheets.

http:/graphics.cs.ucdavis.edu/~okreylos/ResDev/ProtoShop/index.html
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Parameter identification example

* Find model parameters,
satisfying some bounds,
for which the simulation
matches the observed
temperature profiles

*»» Computing objective
function requires
running thermal
analysis code

*» Each simulation
requires approximately
7/ hours on 1 processor
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Formulation of parameter ID problem

min i (Ti (X) _Ti*)2 o Objeptive function |
X - consists of computing
the temperature
S. 1. O<x=u difference between
s i simulation results and

experimental data
*» Optimization

landscape contains

many local minima

“ Uncertainty in both
the measurements
and the model
parameters
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General Optimization Problem

min f (X), Objective function

xoo"

s.t. h(x)=0, Equality constraints
g(x)=0 Inequality constraints

L = f(x) +y"h(x) —w g(x)



Optimization Problem Types

“ Unconstrained optimization

“+ Bound constrained optimization
= Only upper and lower bounds
= Sometimes called “box” constraints

“* General nonlinearly constrained optimization
= Equality and inequality constraints
= Usually nonlinear

*» Some special case classes (nhot currently handled in
OPT++)
= Linear programming (function and constraints linear)

= Quadratic programming (quadratic function, linear
constraints)
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Some working assumptions

“* Objective function is smooth

= Usually true, but simulations can create noisy
behavior

“* Twice continuously differentiable
= Usually true, but difficult to prove

“» Constraints are linearly independent

= Users can sometimes over-specify or incorrectly
guess constraints

“* Expensive objective functions
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OPT++ Philosophy

** Problem should be defined in terms the user
understands
= Do | have second derivatives available? and not
* |s my objective function twice continuously differentiable?

*» Solution methods should be easily interchangeable
= Once the problem is set up, methods should be easy to
Interchange so that the user can compare algorithms
< Common components of algorithms should be
Interchangeable

= Algorithm developers should be able to re-use common
components from other algorithms, for example line
searches, step computations, etc.
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Classes of Problems in OPT++

“* Four major classes of problems available

= NLFO(ndim, fcn, init_fcn, constraint)

e Basic nonlinear function, no derivative information
available

* NLF1(ndim, fcn, init_fcn, constraint)
* Nonlinear function, first derivative information available
* FDNLF1(ndim, fcn, init_fcn, constraint)

 Nonlinear function, first derivative information
approximated

* NLF2(ndim, fcn, init_fcn, constraint)

 Nonlinear function, first and second derivative
iInformation available
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Classes of Solvers in OPT++

¢ Direct search
= No derivative information required
*» Conjugate Gradient

= Derivative information may be available but doesn’t use
guadratic information

“* Newton-type methods
= Algorithm attempts to use/approximate quadratic information
= Newton
= Finite-Difference Newton
= Quasi-Newton
= NIPS
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Constraints

*»» Constraint types
= BoundConstraint(hnumconstraints, lower, upper)
= Linearlnequality(A, rhs, stdFlag)
= NonLinearlnequality(nlprob, rhs, numconstraints, stdFlag)
= LinearEquation(A, rhs)
= NonLinearEquation(nlprob, rhs, numconstraints)
“+ Everything combined
= CompoundConstraint(constraints)
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Quick tour of some of the algorithms
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Pattern search

* Can handle noisy

M functions
¢ Do not require

o : derivative information
** Inherently parallel
*» Convergence can be

painfully slow
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Conjugate Gradient Methods

“* Two major classes

* Standard nonlinear conjugate gradient
= Two different types of line searches

*» Limited Memory BFGS

= Unconstrained version available
= Bound constrained version under development
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Newton-type Methods

; . . . ¢ Fast convergence
properties

*» Good global

X
| =" | convergence
properties

» Inherently serial

s Difficulties with
noisy functions
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NIPS: Nonlinear Interior Point Solver

¢ Interior point method

“* Based on Newton’s method for a particular system of
equations (perturbed Karush-Kuhn-Tucker, KKT,
equations, slack variable form)

< Can handle general nonlinear constraints
“» Can handle strict feasibility

f(x)+0h(x)y -Og(x)w
W-—1~2
h(x)

g(x)—s
ZSe — e

F(u) =

NIy Ild
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Parallel Optimization
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Schnabel Identified Three Levels for
Introducing Parallelism Into Optimization (1995)

*» Parallelize evaluation of function/gradient/constraints
= May or may not be easy to implement

*» Parallelize linear algebra
= Really only useful if the optimization problem is large-scale

*» Parallelize optimization algorithm at a high level, for
example, multiple function evaluations in parallel
= Parallel Direct Search
= Generalized Pattern Search
= TRPDS
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Trust Region + PDS
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* Fast convergence
properties of Newton
method

¢ Good global
convergence properties
of trust region approach

¢ Inherent parallelism of
PDS

¢ Ability to handle noisy
functions
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Algorithm Choices Depend on Problem

NLFO FDNLF1 NLF1 NLF2
OptPDS X X X X
OptCG X X X
OptLBFGS X X X
OptQNewton X X X
OptBCQNewton X X X
OptFDNewton X X X
OptFDNIPS X X X
OptNewton X
OptBCNewton X
OptNIPS X
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Example 1: unconstrained optimization

void init_rosen_x0(int ndim, ColumnVector& Xx);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {
Int ndim = 2;
FDNLF1 nlp(ndim, rosen, init_rosen_x0);
nip.initFcn();
OptQNewton objfcn(&nlp);
objfcn.setSearchStrategy(TrustRegion);
objfcn.setMaxFeval(200);
objfcn.setFcnTol(1.e-4);
objfcn.optimize();

}
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Example 2: Constrained optimization

min (X, —x,)* + 1/9)(x, +x, —10)* H(x, —5)°
S.t.

X’ + X, + X <48,

—4.5< X 4.5,

~45<x, <45

-2.0<x,<5.0
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Constrained optimization: Step 1

Defining the bound constraints: -4.5< X, <4.5,
-4.5<X,<4.5,
-5.0=<X,<5.0
int ndim = 3;

ColumnVector lower(ndim), upper(ndim);
lower << -4.5 << -4.5<<-5.0;
upper << 4.5 <<4.5<<35.0;

Constraint bc = new BoundConstraint(ndim, lower, upper);
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Constrained optimization: Step 2

Defining the nonlinear inequality constraint:

2 2 2
X; X5+ X5 <48

NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, init_hs65_x0));

Constraint nlegn = new NonLinearlnequality(chs65);

Collecting both constraints into one constraint object :
CompoundConstraint™ constraints =

new CompoundConstraint(nleqn, bc);
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Constrained optimization: Step 3

Defining and initializing the nonlinear problem:

NLF2 nips(ndim, hs65, init_hs65_x0, constraints);
nips.initFcn();

Defining the Optimization object and optimizing it!

OptNIPS optobj(&nips);
optobj.optimize();
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Application: Protein Folding

void init_X0(int ndim, ColumnVectoré& Xx);

void eval energy(int ndim, const ColumnVector& x, double& fx, int&
result);

int main() {
PDB pdb(“t162.pdb”); // loads pdb file
Int ndim = 3 * pdb.NumAtoms();
FDNLF1 nlp(ndim, eval_energy, init_XO0);
nip.initFen();
OptLBFGS optobj(&nlp);
optobj.setMaxFeval(10000);
optobj.setFcnTol(1.e-6);
optobj.optimize();

¥
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Energy Minimization Using LBFGS

“* Energy Function: AMBER
“*Protein 162;

“*N =13728 (4576 Atoms)
“*LBFGS with M=15

«» Total number of LBFGS
iterations = 11656

«*» Total number of function
evaluations = 11887

“+ Each function evaluation
takes approximately 5
CPU sec
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Protein T162 (from CASP5)

* Initial configuration
created using
ProteinShop (S.
Crivelli)

“* Energy minimization
computed using
OPT++/LBFGS

** Final average RMSD
change was 3.9

*»» Total simulation took
approximately 32
hours on a 1.7GHz
machine with 512
RAM
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Summary

** OPT++ can handle many types of nonlinear
optimization problems

*» The toolkit can be used to compare the effectiveness
of several algorithms on the same problem easily

* The user needs to provide only functions for the
objective function and the constraints

= [|f additional information is available it can be easily
Incorporated

** The code is open source and available at either
= http://www.nersc.gov/~mezal/projects/opt++
= http://csmr.ca.sandia.gov/opt++
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Backup Material
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Comparison of TRPDS with other

6000
O BFGS
5000 . O SPEC
B TRPDS
0
E—J/ 4000 -
£
—
% 3000 -
o
@)
C:U 2000 -
=
1000 A
o 1 i)
1.E-12 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02
i Office of PDE Relative Convergence Tolerance =
" ] .
.ﬁf..oj Science Fourth Workshop on the DOE Advanced Computational Software Collection ”:'\f] B

L DIARETRINT OF BRI

Berkeley, CA. August 5-8, 2003

mmh



Energy vs. LBFGS iterations for T162 Problem
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T162 Protein: ||gradient||] by atom
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Distribution of ||gradient|| by atom
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